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Abstract A constrained diffusive random walk of n steps in R
d and a random flight in

R
d , which are equivalent, were investigated independently in recent papers (J. Stat. Phys.

127:813, 2007; J. Theor. Probab. 20:769, 2007, and J. Stat. Phys. 131:1039, 2008). The n

steps of the walk are independent and identically distributed random vectors of exponential
length and uniform orientation. Conditioned on the sum of their lengths being equal to a
given value l, closed-form expressions for the distribution of the endpoint of the walk were
obtained altogether for any n for d = 1,2,4. Uniform distributions of the endpoint inside a
ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D.

The previous walk is generalized by considering step lengths which have independent
and identical gamma distributions with a shape parameter q > 0. Given the total walk length
being equal to 1, the step lengths have a Dirichlet distribution whose parameters are all equal
to q. The walk and the flight above correspond to q = 1. Simple analytical expressions are
obtained for any d ≥ 2 and n ≥ 2 for the endpoint distributions of two families of walks
whose q are integers or half-integers which depend solely on d. These endpoint distributions
have a simple geometrical interpretation. Expressed for a two-step planar walk whose q =
1, it means that the distribution of the endpoint on a disc of radius 1 is identical to the
distribution of the projection on the disc of a point M uniformly distributed over the surface
of the 3D unit sphere. Five additional walks, with a uniform distribution of the endpoint in
the inside of a ball, are found from known finite integrals of products of powers and Bessel
functions of the first kind. They include four different walks in R

3, two of two steps and two
of three steps, and one walk of two steps in R

4. Pearson–Liouville random walks, obtained
by distributing the total lengths of the previous Pearson–Dirichlet walks according to some
specified probability law are finally discussed. Examples of unconstrained random walks,
whose step lengths are gamma distributed, are more particularly considered.
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1 Introduction

Pearson turned the problem of modelling the spatio-temporal evolution of the density of
Anopheles mosquitoes in the jungle clearings into a simple planar “random walk”, an ex-
pression coined for the first time in 1905 [1, 2]. The Pearson random walk is uncorrelated
and unbiased: the direction of movement is completely independent of the previous direc-
tions moved and the direction moved at each step of constant length is completely random
[1, 3–6]. The Pearson random walk and its variants find numerous applications in diverse
fields such as physics, biology, ecology ([3–7] and references therein). Among the variants
of the Pearson walk with unequal step sizes, a walk with shrinking step lengths was in-
vestigated very recently in 2D (the length of the ith step is λi−1(λ < 1)) [8]. Interestingly,
the existence of a critical value, λc = 0.5753882(3), is evidenced. The endpoint distribution
changes from having a global maximum away from the origin of the walk for λ < λc to be-
ing peaked at the origin for λ > λc [8]. A large family of variants includes correlated random
walks, which involve a correlation between successive step orientations. They are used to
model the movement of animals, micro-organisms and cells, the dispersal of animals [4–7].

In this paper, by contrast, we focus on uncorrelated and unbiased variants of the Pearson
random walk in Euclidean spaces R

d [9–11] and on random flights performed by a particle
in R

d which are equivalent to the latter walks [12, 13]. We shall consider from now on
only the cases where the lengths of the steps of the walks and the displacements between
two changes of orientations of the flights are either gamma distributed or have Dirichlet
distributions which are directly defined from gamma laws (Sect. 2).

1.1 Notations

A random variable X is recalled to be gamma distributed, with a shape parameter
q > 0 and a scale parameter ρ, if its probability density function (pdf) p(x) is equal to
xq−1e−x/ρ/(ρq�(q)) (x > 0), where �(q) is the Euler gamma function. As the scale para-
meter is irrelevant in the present context, its value is fixed at 1. The considered walks and
flights are thus specified by three parameters (d,n, q). The following notations are used
throughout the rest of the text:

(1) d is the dimension of the Euclidean space in which the walk or the flight takes place.
(2) n is the number of steps and m = n − 1 is the number of reorientations.
(3) q is the shape parameter which characterizes the gamma distribution of the step length

or its daughter distribution: the Dirichlet distribution (Sect. 2).
(4) lower cases are used to designate the probability density functions of the endpoint posi-

tion while upper cases are used for the pdf’s of the distance between the starting point
and the endpoint. All pdf’s are labelled by the ordered triplet (d,n, q). For gamma dis-
tributed step lengths (Sect. 8), the pdf’s are denoted as:

– gd,n,q(r), where gd,n,q(r)dr represents the probability to find the endpoint of the
n-step walk, or the position of the flying particle after m reorientations, within a
small volume element dr at a point r .
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Fig. 1 Monte-Carlo simulation
of the positions of the endpoints
of 1000 independent planar
random walks of two steps (the
most distant walkers are not
shown). The step orientations are
uniform and independent, the
step lengths sk (k = 1,2) are
exponentially distributed,
p(sk) = exp(−sk), (q = 1), and
independent

– Gd,n,q(r), where Gd,n,q(r)dr represents the probability to find the latter endpoint or
the latter position at a distance from the starting point ranging between r and r + dr .

Similarly, pd,n,q(r) and Pd,n,q(r) denote the corresponding pdf’s in the case of
Dirichlet distributed step lengths.

(5) unconstrained step lengths are denoted as sk (k = 1, .., n) while step lengths whose sum
is constrained to have a given value l are denoted as lk (k = 1, .., n),

∑n

k=1 lk = l.

1.2 Random Walks and Random Flights with q = 1

To model the motion of microorganisms on planar surfaces, Stadje [9] investigated a 2D
random flight. A microorganism starts at the origin, moves in straight-line paths at constant
speed, and changes its direction after exponentially distributed time intervals. Paths have in-
dependent uniform orientations and independent and identically distributed (i.i.d.) lengths.
Stadje derived the exact pdf of the position r of the microorganism at time t and the condi-
tional pdf of its position at the time of the nth turn (see further Sect. 8.2). Figure 1 shows
the positions of the endpoints of walkers which perform an isotropic planar random walk of
two steps with exponentially distributed lengths (d = 2, n = 2, q = 1).

Considering a particle which moves in a random environment and undergoes elastic col-
lisions at uniformly distributed point obstacles, Franceschetti [10] defined a variant of the
previous walk in R

d : as above, the n steps of the walk are i.i.d. d-dimensional random
vectors whose lengths have an exponential distribution (q = 1) and whose orientations are
uniform. However, the total travelled length is constrained to be equal to a given l (> 0),
whose value is fixed here at 1 without loss of generality. All walks of more than one step
end thus on a disc of radius 1 centered at the starting point (Figs. 2 and 3). Figure 2 (n = 2)

illustrates the result of fixing to 1 the total length of the two-step planar walk of Fig. 1.
Franceschetti derived the conditional pdf of the position of the endpoint r for a walk in

R
d (d = 1,2) of n steps whose total length is fixed. The latter pdf is denoted consistently

pd,n,1(r) as we will show in Sect. 2 that the step length distribution is actually a Dirichlet
distribution with q = 1. The pdf pd,n,1(r) depends only on the distance r = ‖r‖ between
the starting point and the endpoint as the walk is statistically invariant by any orthogonal
transformation. In 2D, the pdf p2,n,1(r) reads [10]:

p2,n,1(r) = (n − 1)

2π
(1 − r2)

n−3
2 (r < 1) n = 2,3, . . . (1)

Franceschetti concluded that a walker is more likely to end its walk near the boundary of
the disc of radius 1 when making less than three steps in 2D (Fig. 2 for n = 2) and near the
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Fig. 2 Monte-Carlo simulation of the positions of the endpoints of 1000 independent Pearson–Dirichlet
planar random walks of n steps (n = 2,9), PD(d = 2, n, q = 1)

Fig. 3 Monte-Carlo simulation
of the positions of the endpoints
of 1000 independent
Pearson–Dirichlet planar random
walks of three steps,
PD(d = 2, n = 3, q = 1). The
walkers are uniformly distributed
on a disc of radius 1

origin when making more than three steps (Fig. 2 for n = 9). By making exactly three steps
(Fig. 3), the endpoint is uniformly distributed inside the disc of radius 1 (1). A geometrical
interpretation of (1) is given in Fig. 4 for n = 2. The value n = 3 in 2D was considered as a
‘critical transition point’ in the behaviour of the random walk. The question naturally arose
as to whether it is possible to find a uniform distribution of endpoints for another couple
(d,n). As calculations were thought to become intractable in dimensions higher than d = 2,
Franceschetti [10] derived a necessary condition for endpoints to be uniformly distributed
inside a ball of radius l (= 1). From the second moment of the distance of the endpoint to
the origin, he obtained a relation between n and d , d(n − 1) = 4, which is only satisfied
by the two couples (d = 2, n = 3) and (d = 4, n = 2). The Franceschetti walk was later
formulated in terms of scattering of particles by García-Pelayo [11]. He concluded that the
(d = 2, n = 3) walk is the sole walk of the whole family whose endpoint distribution is
uniform.

As shown in Sect. 2, the aforementioned walk is equivalent to a random flight performed
by a particle in R

d which starts from the origin at time t = 0, moves with a constant and
finite velocity c in an initial random direction. It flies at a constant velocity c until it chooses
instantaneously a new direction, at a random time determined by a homogeneous Poisson
process, independently of the previous direction [12, 13]. For a given time interval t , the to-
tal length of the flight is then fixed, l = ct . The value q = 1 results here from the exponential
distribution of the time interval between two successive Poisson events (Sect. 2). The con-
ditional pdf of the position of the particle at time t , given the number m of Poisson events
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Fig. 4 (Color online) The “hyperspherical uniform” property: a planar two-step walk, whose total length is 1,
starts at O in a random direction and ends at E. The distribution of E on a disc of unit radius centered at O
((1) with n = 2) is identical to the distribution of the projection on the disc of a point M uniformly distributed
over the surface of the 3D unit sphere. (inspired by a representation of the celestial sphere: Observatoire de
Paris http://media4.obspm.fr/)

that occurred up to t , was obtained for any m for d = 2 and for d = 4 by Orsingher and De
Gregorio [12] and by Kolesnik [13]. The pdf p4,n,1(r) follows from their results:

p4,n,1(r) = n(n − 1)

π2
(1 − r2)n−2 (r < 1) n = 2,3, . . . (2)

A uniform distribution exists then for n = 2 in 4D [12, 13] in contradiction with the con-
clusion of García-Pelayo [11]. The latter is explained by an error in equation (7) of [11] in
which 4!/6! must be replaced by (2 + s)!/(4 + s)!.

1.3 The “Hyperspherical Uniform” Property for q = 1

A simple geometrical interpretation is hidden behind the pdf’s given by (1) and (2). It is
illustrated in Fig. 4 for the case of the previous two-step planar walk (1). The distribution of
the endpoint on a disc of unit radius, centered at the starting point, is identical to the distri-
bution of the projection on the disc of a point M uniformly distributed over the surface of
the 3D unit sphere. From now on, we will name for brevity “hyperspherical uniform” (HU)
a walk which possesses the latter property. Its endpoint distribution is then identical to the
distribution of the projection in the walk space R

d of a point, with a position vector u(k),
randomly chosen on the surface of the unit hypersphere of some hyperspace R

k (k = 3 in
Fig. 4). The pdf’s p2,n,1(r) (1) and p4,n,1(r) (2) are easily obtained in that way from (59) of
the Appendix with k = n + 1 when j = d = 2 and with k = 2n + 2 when j = d = 4 respec-
tively ([13] and Sect. 3). The existence of uniform distributions for d = 2,4 stems actually
from the HU property (end of Appendix). We realized independently of [13] that the con-
strained planar walk of Sect. 1.2 is hyperspherical uniform (emails were exchanged on that
topic with M. Franceschetti (6–7 June 2007)). This observation motivated the present work.

1.4 The Step Length Distribution

The step lengths of the random walks and random flights of Sect. 1.2 are uniformly distrib-
uted over the unit (n−1) simplex (Sect. 2.1). This distribution is also a Dirichlet distribution
whose parameters are all equal to 1. More generally, we will consider “Pearson–Dirichlet”

http://media4.obspm.fr/
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random walks of n steps in R
d denoted by PD(d,n, q) whose parameters are chosen to be

all equal to a given positive value q (Sect. 2). A simple way to describe the latter walks is to
consider step lengths which have a gamma distribution with a shape parameter q . Given a
total walk length equal to 1, the step lengths have then a Dirichlet distribution whose para-
meters are all equal to q . Monte-Carlo simulations of PD(2, n,1) walks are shown in Figs. 2
and 3 for n = 2,3,9.

1.5 Aims and Sketch of the Method

The aims of the present work are to find all hyperspherical uniform walks among the
Pearson–Dirichlet walks PD(d,n, q) and to determine the associated hyperspace dimen-
sions k. The pdf’s of the endpoints of such HU walks, pd,n,q(r), are then readily obtained
from the dimensions k by replacing simply j by d in (59). The derivation of their ana-
lytical expressions, pd,n,q(r) ∝ (1 − r2)δ , reduces then to that of their exponents δ(d,n).
Such walks are notable because very simple closed-form expressions do exist for the pdf’s
of the final locations of the walkers. The possible occurrence of other uniform distributions,
pd,n,q(r) = constant ⇔ δ(d,n) = 0, can then be examined. The method may be summarized
as follows:

(1) restrict the search for HU walks to Pearson–Dirichlet walks PD(d,n, q) only
(2) find a necessary condition for a walk of this family to be HU and deduce the parameters

(d,n, q) and the hyperspace dimension k of all the walks which might be HU
(3) from a recurrence relation obeyed by the characteristic functions of the distributions of

the endpoint positions, prove that the selected HU walks are all HU
(4) from the pdf’s of the HU walks, infer cases when the endpoint is uniformly distributed

in the inside of the unit hypersphere of R
d

Besides the two uniform walks in 2D and in 4D reported for q = 1 [10, 12, 13], five
additional uniform walks, four in 3D and one in 4D, will be shown to be associated with
known finite integrals of products of powers and Bessel functions of the first kind.

A Pearson–Liouville random walk will be finally defined from the Pearson–Dirichlet
walks by letting the total walk length l vary according to some probability law. Relations
between the pdf’s of the endpoint of the unconstrained walk and the pdf’s of the constrained
one will be established. An illustrative example of random walks of n i.i.d. steps in R

d ,
whose lengths are gamma distributed, will be considered.

2 Dirichlet Distribution and Pearson–Dirichlet Walks

2.1 The Uniform Distribution on the Unit (n − 1)-simplex

The joint pdf pe(s1, s2, .., sn) of i.i.d. exponential step lengths si > 0 (i = 1, .., n), with a
scale parameter of 1, is simply given by:

pe(s1, s2, .., sn) = exp

(

−
n∑

i=1

si

)

(3)

Defining first their sum as s = ∑n

i=1 si and li = si/s (i = 1, .., n), then changing the set
of variables from (s1, s2, .., sn) to (l1, l2, ..lm, s), (m = n − 1), the following joint pdf is
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obtained from the Jacobian of the transformation which is equal to sm:

pu(l1, l2, ..lm, s) = m!
(

1

m! s
m exp(−s)

)

= p(l1, l2, ..lm) × pS(s) (4)

Then l(m) = (l1, l2, ..lm) and s are independent. As expected, the distribution of s, which
is the sum of n = m + 1 i.i.d. exponential random variables, is a gamma distribution with
a shape parameter q = n. Further, the pdf, p(l1, l2, .., lm) = m!, is constant. Rescaling, if
necessary, the total length to make l = ∑n

k=1 lk = 1, the distribution of the step length of
the constrained walk described in Sect. 1.2 [10] is, by construction, uniform over the unit
(n − 1) simplex Sn−1 defined by:

Sn−1 =
{

(l1, l2, .., ln) ∈ R
n :

n∑

i=1

li = 1 and li ≥ 0 for any i

}

(5)

The same conclusion holds for the random flight considered in [12, 13]. Indeed, the joint
pdf of the times of occurrence of events from an homogeneous Poisson process in the time
interval (0, t], given that the number of events is N(t) = m, is p(t1, t2, .., tm|N(t) = m) =
m!
tm

(0 < t1 < t2 < · · · < tm ≤ t) (see for instance [14] p. 277). The distribution of the inter-
arrival times, in a time interval scaled down to unit length, is thus identical to the previous
distribution p(l1, l2, .., lm) as the Jacobian of the transformation is 1. The inter-arrival time
distribution (t = 1) is also that of m i.i.d. random variables Ui (i = 1, ..,m) which are
uniformly distributed on the unit interval (0–1) [14, 15]. When their values are sorted in
increasing order, the ordered arrival “times” are denoted as U(i) (i = 1, ..,m). Then, the
multivariate pdf of the inter-arrival times, V(i) = U(i) − U(i−1) (i = 1, ..,m; U(0) = 0), is
uniform over the unit (n − 1) simplex [15].

The distribution of the endpoint of the walk studied by Franceschetti [10] and the condi-
tional distribution of the particle after a random flight of duration t investigated by Orsingher
and De Gregorio [12] and by Kolesnik [13] are concluded to be identical after a replacement
of ct by l ((1) and (2) with l = 1). For a total length of 1, the step lengths are uniformly dis-
tributed over the unit (n − 1) simplex, a distribution which is a particular case of a Dirichlet
distribution whose parameters are all equal to q = 1 as shown by (6) below.

2.2 The Dirichlet Distribution

The Dirichlet distribution is of common use in simplices. It is applied for instance in ecology,
to model fragmentation or compositional data [16, 17]. The walk performed by a donkey
inside a tetrahedron, as constructed by Letac [18], leads to a stationary distribution which
is Dirichlet. The Dirichlet distribution can be simply defined as follows [19]: consider a set
of n = m + 1 independent gamma distributed random variables, si (> 0, i = 1, .., n) with
shape parameters αi > 0 (i = 1, .., n) and scale parameters of 1 (for simplicity) and define
lj = sj /

∑n

i=1 si (j = 1, .., n). The distribution of l(m) is a Dirichlet distribution with a vector
of parameters α(n) = (α1, . . . , αm,αn), denoted as Dm(α(n)). Using a method identical to the
previous one, its pdf is established to be ([19], p. 17):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pm(l1, .., lm) = K(α(n))

n∏

i=1

l
αi−1
i

ln = 1 −
m∑

i=1

li , li > 0, i = 1, .., n

(6)
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where K(α(n)) = �(α)/(
∏n

i=1 �(αi)), α = ∑n

i=1 αi . Defining a vector β(n) = (β1, . . . , βm,0)

and β = ∑n

i=1 βi , the moment Mβ = 〈∏m

i=1 l
βi

i 〉 is simply obtained by noticing that it is re-
lated to the normalization constant of the Dirichlet distribution Dm(α(n) + β(n)), namely:

Mβ =
〈

m∏

i=1

l
βi

i

〉

= K(α(n))/K(α(n) + β(n)) =
(

m∏

i=1

(αi)βi

)

/(α)β (7)

where (a)r = �(a+ r)/�(a) reduces to an ascending factorial, (a)r = a(a+1)..(a+ r −1),
when r is an integer. The Dirichlet distribution has a notable amalgamation property [19].
If the n components l1, .., ln (

∑n

i=1 li = 1) of a vector, whose distribution is Dm(α(n)), are
grouped into k components v1, .., vk (

∑k

i=1 vi = 1), then the distribution of (v1, .., vk−1) is
Dk−1(α

∗(k)) where each α∗
i (i = 1, .., k) is the sum of the αj ’s corresponding to the compo-

nents of the initial vector which add up to vi . The marginal distribution of any component li
is then obtained by grouping the remaining components into a single one. Any component
li has thus a beta distribution [20] with a pdf:

pi(li) = �(α)

�(αi)�(α − αi)
× l

αi−1
i (1 − li )

α−αi−1 (0 < li < 1).

The amalgamation property results directly from the well-known fact that a sum of indepen-
dent gamma random variables, with identical scale parameters and a priori different shape
parameters, is still a gamma random variable with the same scale parameter and a shape
parameter which is the sum of all shape parameters [19, 20].

The method based on the generation of i.i.d. gamma random variables is the simplest
method for simulating Dirichlet distributions on simplices ([21] for the case α(n) = (1, ..,1))

that was used in the present work for Monte-Carlo simulations of Pearson–Dirichlet random
walks. Finally, it is readily seen from the definition of the Dirichlet distribution that the con-
ditional distribution of l∗j = lj+1

1−l1
, (j = 1, ..,m − 1), given l1, is still a Dirichlet distribution

(Theorem 1.6 of Fang et al. [19]), Dm−1(α
(n−1) = (α2, .., αm,αn)), with a pdf:

pm−1(l
∗
1 , .., l

∗
m−1|l1) = pm−1(l

∗
1 , .., l

∗
m−1) = K(α(n−1))

[
m∏

i=1

l
∗αi+1−1
i

]

(8)

As the distribution of l∗(m−1) is independent of the distribution of l1, then l1 is said to be
neutral [22]. This property serves as a basis for a generalization of Dirichlet distributions
([23] and references therein). The step lengths, (l1, l2, ..lm), of the Pearson–Dirichlet walks
PD(d,n, q) considered in what follows have a Dirichlet distribution Dm(q(n)), where q(n)

is the n-dimensional vector whose components are all equal to q (q > 0). In this case, the
distribution pm−1(l

∗
1 , .., l∗m−1) is simply Dm−1(q

(n−1)).

2.3 Pearson–Dirichlet Walks and Flights

When q is an integer, a Pearson–Dirichlet walk PD(d,n, q) (d ≥ 2) can be interpreted
equally in terms of random walks similar to the walks described in Sect. 1.2 [10]: instead
of changing its direction after every step with an exponentially distributed length, the par-
ticle changes it at every q steps, the intermediate steps being ineffective (Fig. 5). The dis-
tribution of the step length between two changes of direction is then the sum of q i.i.d.
exponential random contributions, that is a gamma distribution with a shape parameter q .
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Fig. 5 A Pearson–Dirichlet random walk PD (2, n, q) in R
2 for q = 3: the walk starts at O in a random

direction; the length of every step is the sum of q (as indicated by q − 1 empty circles) i.i.d. exponential
random variables; at Pk (k = 1, .., n−1), a new random direction is taken independently of the previous ones;
every step is rescaled so as to make the total travelled length equal to 1. The walk ends at Pn . Equivalently,
the n step lengths are i.i.d. random variables with a gamma distribution whose shape parameter is q

Equivalently, we may consider that the n steps of the walk are i.i.d. d-dimensional random
vectors, whose orientations are uniform, whose lengths have a gamma distribution with a
pdf p(sk) = s

q−1
k e−s/�(q) (k = 1, .., n), where q may have any positive value. The latter

walk, given its total length being equal to 1, is a Pearson–Dirichlet walk whose step lengths
have by definition a Dirichlet distribution Dm(q(n)) (Sect. 2.2).

Similarly, the conditional pdf of the times of occurrence of Poisson events in (0,1],
given their number N(1) = nq − 1, is p(t1, t2, .., tnq−1|N(1) = nq − 1) = (nq − 1)! (0 <

t1 < t2 < · · · < tnq−1 ≤ 1) (Sect. 2.1, [14, 15]) and the inter-arrival times distribution is thus
a Dirichlet distribution Dnq−1(α

(nq) = (1,1, . . . ,1)). Amalgamating the nq variables q by
q gives the sought-after Dirichlet distribution Dm(q(n)). During its flight, a particle changes
then its direction at every q Poisson events, q − 1 intermediate events being ineffective
(Fig. 5). Beghin and Orsingher [24] studied recently a planar random flight of this type,
PD(d = 2, n, q = 2) (see also Sect. 8.2).The flight described above might be looked at as a
persistent random flight with qe = 1 and fully correlated orientations of q successive steps.

3 A Necessary Condition for a Walk PD(d,n,q) to Be “Hyperspherical Uniform”

The general problem of obtaining closed-form expressions of the probability density func-
tion of the endpoint of a walk of n steps PD(d,n, q) in R

d is intractable for any n and d .
Explicit expressions of the pdf pd,2,1(r) were however obtained by Orsingher and De Gre-
gorio (equation (2.25) of [12]) for the endpoints of walks of two steps PD(d,2,1) in any
dimension d ≥ 2:

pd,2,1(r) = 2d−3�(d/2)

πd/2
(1 − r2)(d−3)/2F

(

d − 2,
1

2
; d

2
; r2

)

(r < 1) (9)

where F(, ; ; ) is a Gaussian hypergeometric function. The latter density reduces to an even
polynomial in r of degree d − 4 for even d ≥ 4. Kolesnik [25] derived explicit expressions
of the pdf’s p6,n,1(r) of walks of n steps in 6D which reduce to even polynomials of finite
orders. It is for instance, an even polynomial of degree 6 in r for n = 3 (equation (15)
of [25]).

Rather than coping with an essentially insoluble problem, we chose to search under the
lamppost to find all Pearson–Dirichlet walks PD(d,n, q) whose distributions of the endpoint
pd,n,q(r) are simple to calculate. The conjunction of known finite integrals of products of
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two Bessel functions of the first kind with powers and the possible existence of recurrence
relations for values of q > 0 other than 1 led us to select the hyperspherical uniform property
as our lamppost.

The Dirichlet distribution of the step-length vector l(m) has a multivariate pdf given by:

pm(l1, .., lm) = �(nq)

�(q)n
×

[
n∏

i=1

l
q−1
i

]

(10)

with ln = 1 − ∑m

i=1 li , li > 0, (i = 1, .., n). The endpoint of a Pearson–Dirichlet walk
PD(d,n, q) is a vector of R

d which reads (n ≥ 2):

r (d)
n =

n∑

i=1

liu
(d)
i (11)

where the u
(d)
i = (ui(1), .., ui(d)), (i = 1, .., n), are n independent unit vectors uniformly

distributed over the surface of a hypersphere in R
d . A simple necessary condition for a walk

to be HU is that the even moments of a single component r1 = rn(1) of r (d)
n are equal to the

even moments of any component of a unit vector uniformly distributed over the surface of a
hypersphere in some space R

k , where k has to be determined. This necessary condition will
thus provide all possible sets (d,n, q, k) for which the sought-after property might hold.
Actually, the moments 〈r2

1 〉 and 〈r4
1 〉 happen to suffice. The moment 〈r2

1 〉 is just n times
the product of 〈l2

i 〉 = q(q+1)

(nq)(nq+1)
by 〈ui(j)2〉 = 1

d
, the cross-products being zero because the

u
(d)
i ’s are independent and have zero means. Similarly, the moment 〈r4

1 〉 is given by the sum:
n〈l4

1〉〈u4
1(1)〉 + 3n(n − 1)〈l2

1 l
2
2〉〈u2

1(1)〉2. These moments are (7) and (60):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈r2
1 〉 = 1

k
= q + 1

d(nq + 1)

〈r4
1 〉 = 3

k(k + 2)
= 3(q + 1)(q + 2)(q + 3)

d(d + 2)(nq + 1)(nq + 2)(nq + 3)
+ 3(n − 1)q(q + 1)2

d2(nq + 1)(nq + 2)(nq + 3)

(12)

We notice first that (12) yields the expected result for n = 1, namely k = d as the endpoint of
a walk of one step is, by definition, uniformly distributed over the surface of the hypersphere
in R

d . In the following, we take n > 1. The moment 〈r2
1 〉 gives:

k = d(nq + 1)

q + 1
(13)

which, when plugged into 〈r4
1 〉 (12), gives a relation between d,n and q that simplifies to a

quadratic equation:

d2 − 3(q + 1)d + 2(q + 1)2 = 0 (14)

which does not depend on n. The two solutions, whose correctness is readily verified
from (12), and the corresponding “hyperspace” dimensions are:

{
d ′ = q + 1 k′ = nq + 1

d ′′ = 2(q + 1) k′′ = 2(nq + 1)
(15)
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Table 1 Parameters needed to obtain the pdf of the endpoint pd,n,q (r), and that of the distance of the
endpoint to the origin Pd,n,q (r), for the two families of Pearson–Dirichlet walks PD(d,n, q) which are HU

Parameter
of the Dirichlet
distribution

Hypersphere
in R

k :
pd,n,q (r) ∝ (1 − r2)δ (59)

Family number
i = 1,2

q = d
i

− 1
(d ≥ i + 1)

k = n(d − i) + i δ = (n−1)(d−i)−2
2

pd,n,q (r) = �(k/2)

�(δ+1)πd/2 (1 − r2)δ Pd,n,q (r) = 2�(δ+d/2+1)
�(δ+1)�(d/2)

rd−1(1 − r2)δ

The previous necessary condition yields two possibilities: either q(≥ 1/2) is an integer or it
is a half-integer. Two families of HU walks, numbered one and two, PD(d,n, q), are then
found. For family i (i = 1,2), the parameter q and the hyperspace dimension k are given by
Table 1. As required, k is equal to d for n = 1. The HU walks, PD(2, n,1) (i = 1, q = 1) in
2D and PD(4, n,1) (i = 2, q = 1) in 4D, described in Sect. 1.2 (1) [12, 13], are then seen to
belong to different HU families.

Using a recurrence relation between the characteristic functions of the probability dis-
tributions of the endpoints of walks of n − 1 and of n steps, quite similar to that derived
by Kolesnik [13] for q = 1, we prove in the next section that the previous walks are indeed
hyperspherical uniform walks for any n. The necessary conditions of the present section
will thus be found to be sufficient. Table 1 gathers the parameters needed to obtain the
endpoint pdf pd,n,q(r) from (59) and consequently that of the distance of the endpoint to
the origin Pd,n,q(r) for the two HU families of the considered Pearson–Dirichlet walks.
The former pdf, given by pd,n,q(r) ∝ (1 − r2)δ (Table 1) reduces then to a constant when
d − i = 2/(n−1) is an integer, that is for d = i +1(n = 3) and d = i +2(n = 2). Four walks
whose endpoints are uniformly distributed in the inside of the unit hypersphere of R

d are
therefore found in that way for two steps and for three steps. Two of them were previously
described: d = 2, n = 3 and d = 4, n = 2 [10, 12, 13] (Sect. 1). Two are new: d = 3, n = 2
and d = 3, n = 3. Three additional uniform walks are obtained in Sect. 5 for random walks
with Dirichlet distributions of step lengths whose parameters are not all the same. The dis-
tribution of the square of the distance, s = r2, is a beta distribution with parameters d/2 and
δ + 1. Once the latter pdf’s are known for l = 1, one gets immediately that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p
(l)
d,n,q(r) = 1

ld
pd,n,q

(
r

l

)

P
(l)
d,n,q(r) = 1

ld
Pd,n,q

(
r

l

) (16)

for an arbitrary total walk length l. Table 2 collects all the characteristics of the four previous
uniform walks and those of the three additional uniform walks mentioned above.

4 A Recurrence Relation

To establish that a walk PD(d,n, q) is hyperspherical uniform, it suffices to prove that
the characteristic function (c.f.) of the probability distribution of the endpoint r = r (d)

n is
	k(ρ) (58). The latter c.f. is that of a unit vector whose tip is uniformly distributed over
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Table 2 The seven Pearson–Dirichlet HU walks, with step length distributions Dm(α(n) = (α1, α2, .., αn)),
whose endpoints are uniformly distributed in the inside of a hypersphere in R

d (the first and the sixth walks
are described in [10, 12, 13])

Walk in
R

d
Number of steps
n

Dirichlet parameters
α(n) = (α1, α2, .., αn)

Step length pdf’s
Dn−1(α(n))

R
2 3 (1,1,1) p2(l1, l2) = 2 (l3 = 1 − l1 − l2)

p1(li ) = 2(1 − li ) (i = 1, .,3)

R
3 2 (2,2) p1(l1) = 6l1(1 − l1) (l2 = 1 − l1)

R
3 2 (2,3) p1(l1) = 12l1(1 − l1)2 (l2 = 1 − l1)

R
3 3 ( 1

2 , 1
2 , 1

2 ) p2(l1, l2) = 1/(2π
√

l1l2l3)

(l3 = 1 − l1 − l2)

p1(li ) = 1/(2
√

li ) (i = 1, .,3)

R
3 3 ( 3

2 , 1
2 , 1

2 ) p2(l1, l2) = (3/(2π)) × √
l1/(l2l3)

(l3 = 1 − l1 − l2)

p1(l1) = 3
√

l1/2

p1(li ) = 3(1 − li )/(4
√

li ) (i = 2,3)

R
4 2 (1,1) p1(l1) = 1 (l2 = 1 − l1)

R
4 2 (2,1) p1(l1) = 2l1 (l2 = 1 − l1)

the surface of the hypersphere in R
k with k = n(d − i) + i, d ≥ i + 1, i = 1,2. The condi-

tional pdf of the rescaled step lengths, pm−1(l
∗
1 , l∗2 , ..l∗m−1|l1), which is a Dirichlet distribu-

tion whose parameters are all equal to q (8), allows us to express the endpoint of the walk
of n ≥ 2 steps in R

d as follows:

r (d)
n = l1u

(d)

1 +
[

n∑

i=2

liu
(d)
i

]

= l1u
(d)

1 + (1 − l1)

[
n−1∑

i=1

l∗i u
(d)
i

]

= l1u
(d)

1 + (1 − l1)r
(d)

n−1 (17)

From (17) and the marginal pdf, p1(l1) = �(nq)

�(q)�((n−1)q)
l
q−1
1 (1 − l1)

(n−1)q−1, we obtain the c.f.

of the probability distribution of r (d)
n , 
d,n,q(ρ) = 〈exp(iρ · r (d)

n )〉 (ρ = ‖ρ‖):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩


d,1,q (ρ) = 	d(ρ)


d,2,q (ρ) ∝
∫ 1

0
l
q−1
1 (1 − l1)

q−1	d(ρl1)	d(ρ(1 − l1))dl1


d,n,q(ρ) ∝
∫ 1

0
l
q−1
1 (1 − l1)

(n−1)q−1	d(ρl1)
d,n−1,q (ρ(1 − l1))dl1 (n ≥ 3)

(18)

We don’t have to worry about the proportionality constants in (18), as their final values
are simply obtained from the condition that 
d,n,q(0) = 1 for any n. A walk of one step is
HU, by definition, and its c.f. 
d,1,q (ρ) is therefore identical to 	d(ρ) for any q > 0 but
Pearson–Dirichlet walks PD(d,n, q) are not all hyperspherical uniform. We determine next
the conditions for the HU property to hold for a walk of two steps. Using (58) and (18), it
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Table 3 The parameters of the two families of HU Pearson–Dirichlet walks PD(d,n, q), which are needed to
solve the recurrence relations (22, 23) from integrals (20) and (21) (hypersphere in R

k with k = a(n − 1) + b

for n − 1 steps)

Family i (= 1,2)

q

a b Integral
equation no

μ v

(n − 1 steps)

d
i

− 1 (d ≥ i + 1) d − i i 19 + i d
2 − 1 (d−i)(n−1)+i−2

2

comes:


d,2,q (ρ) ∝ 1

ρ2q−1

∫ ρ

0
xq−d/2(ρ − x)q−d/2J(d−2)/2(x)J(d−2)/2(ρ − x)dx (19)

where Ju(x) is a Bessel function of the first kind. The following finite integrals:
∫ ρ

0
xμ(ρ − x)vJμ(x)Jv(ρ − x)dx = �(μ + 1/2)�(v + 1/2)√

2π�(v + μ + 1)
ρμ+v+1/2Jμ+v+1/2(ρ) (20)

(μ, v > −1/2) (integral 6.581.3 of [28]) and:
∫ ρ

0

Jμ(x)Jv(ρ − x)

x(ρ − x)
dx = (μ + v)

μvρ
Jμ+v(ρ) (21)

(μ, v > 0) ([29], p. 380) yield explicit expressions of integral (19) either when:

– q = d − 1 ((20), μ + v + 1/2 = (2d − 3)/2)

or when:
– q = (d − 2)/2 ((21), μ + v = d − 2)

The parameters q = d
i

− 1 (i = 1,2) derived in Sect. 3 are precisely those which obey
the latter conditions. The walks of two steps, whose parameters are obtained from Table 1
for n = 2, are then concluded from (19, 20, 21) and (58) to be hyperspherical uniform with
k = 2d − i, (d ≥ i + 1, i = 1,2). Let us assume now that the walks with parameters d, q, k

given in Table 1, are HU for (n − 1) ≥ 3 steps, that is 
d,n−1,q (ρ) = 	a(n−1)+b(ρ) where
a(= a(d)) and b are reported separately in Table 3. Then, (18) writes (n ≥ 2):


d,n,q(ρ) ∝
∫ 1

0
l
q−1
1 (1 − l1)

(n−1)q−1	d(ρl1)	a(n−1)+b(ρ(1 − l1))dl1 (22)

which reduces to:


d,n,q(ρ) ∝ 1

ρnq−1

∫ ρ

0
xq−d/2(ρ − x)(n−1)(q−a/2)−b/2J(d−2)/2(x)J(a(n−1)+b−2)/2(ρ − x)dx

(23)
From (23) and integrals (20) and (21), we deduce that 
d,n,q(ρ) = 	an+b(ρ) for the walks
whose parameters are given in Tables 1 and 3. As the explicit calculations are all per-
formed in the same way, we will just present one of them and derive the c.f., 
2j+1,n,q(ρ) =
	(2j−1)n+2(ρ), with q = (2j − 1)/2 for a walk of n steps in R

2j+1 which belongs to the
second family. To obtain 
2j+1,n,q(ρ), we assume that 
2j+1,n−1,q (ρ) = 	(2j−1)(n−1)+2(ρ)

for a walk of n − 1 steps (n ≥ 2) using the parameters deduced from Table 3 for i = 2,
a = 2j − 1, b = 2. From the recurrence relation (23), it comes:


2j+1,n,q(ρ) ∝ 1

ρ(2j−1)n/2−1

∫ ρ

0
x−1(ρ − x)−1J(2j−1)/2(x)J(2j−1)(n−1)/2(ρ − x)dx (24)
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From (21) with μ = (2j −1)/2 and v = (2j −1)(n−1)/2, we conclude that 
2j+1,n,q(ρ) ∝
J(2j−1)n/2(ρ)/ρ(2j−1)n/2 and from (58) and the condition, 
2j+1,n,q(0) = 1, we obtain finally

2j+1,n,q(ρ) = 	(2j−1)n+2(ρ) which proves that the HU property holds for n when it holds
for n − 1(n ≥ 2).

In sum, we have shown that any walk of n steps defined in Table 1 is HU given that it is
HU for (n − 1) steps (n ≥ 2). As the property holds for n = 1 (and for n = 2) it holds for
any n. We conclude that the walks evidenced by the necessary condition of Sect. 3 are all
HU for any n. The corresponding parameters and distributions of the endpoint are given in
Table 1. Two families of HU Dirichlet walks exist in any space R

d with d ≥ 3 and only one
family for d = 2.

5 Additional Hyperspherical Uniform Walks Among Pearson–Dirichlet Random
Walks

Two other finite integrals of products of powers and Bessel functions of the first kind yield
additional HU walks.

A HU walk of two steps in any space of dimension d greater than 1 is indeed obtained
for the following Dirichlet distribution D1(α

(2) = (d − 1, d)) (and by symmetry D1(α
(2) =

(d, d − 1))):

p1(l1) = (2d − 2)!
(d − 1)!(d − 2)! l

d−2
1 (1 − l1)

d−1 (25)

Then, from r
(d)

2 = l1u
(d)

1 + (1 − l1)u
(d)

2 , we write the characteristic function (the different
parameters of the Dirichlet distribution are now specified in the notation of the c.f.):


d,2,(d−1,d)(ρ) = 〈exp(iρ · r (d)

2 )〉 ∝
∫ 1

0
ld−2
1 (1 − l1)

d−1	d(ρl1)	d(ρ(1 − l1))dl1 (26)

that is:


d,2,(d−1,d)(ρ) ∝ 1

ρ2d−2

∫ ρ

0
xd/2−1(ρ − x)d/2Jd/2−1(x)Jd/2−1(ρ − x)dx (27)

From 
d,2,(d−1,d)(0) = 1 and the following integral:
∫ ρ

0
xμ(ρ − x)v+1Jμ(x)Jv(ρ − x)dx = �(μ + 1/2)�(v + 3/2)√

2π�(v + μ + 2)
ρμ+v+3/2Jμ+v+1/2(ρ) (28)

(μ > −1/2, v > −1) (integral 6.581.4 of [28]), and from μ + v + 1/2 = (2d − 3)/2, we
get (58):


d,2,(d−1,d)(ρ) = 	2d−1(ρ) (29)

The latter walk is then concluded to be HU with k = 2d −1. The distribution of the endpoint
is finally obtained from (59) with j = d :

pd,2,{d−1,d}(r) = �((2d − 1)/2)

�((d − 1)/2)πd/2
(1 − r2)(d−3)/2 (30)

and consequently:

Pd,2,{d−1,d}(r) = 2d−1�((2d − 1)/2)

(d − 2)!√π
rd−1(1 − r2)(d−3)/2 (31)
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A fifth HU walk, whose endpoint is uniformly distributed in the inside of a sphere in R
3, is

then found for a walk of two steps.
The results of the previous paragraph extend to a walk in R

d whose step lengths have a
Dirichlet distribution Dm(α(n) = (d, d −1, d −1, .., d −1)). Except for the first, the Dirichlet
parameters of this HU walk coincide with those of the first HU family as does the hyperspace
dimension, k = n(d − 1) + 1.

A last family of HU walks is found in any space of dimension d greater than 2 from the
following integral (μ > 0, v > −1) ([29] p. 380):

∫ ρ

0

Jμ(x)Jv(ρ − x)

x
dx = 1

μ
Jμ+v(ρ) (32)

The associated Dirichlet distribution is, D1(α
(2) = ( d

2 − 1, d
2 )), for a two-step walk with a

distribution of l1 given by:

p1(l1) = (d − 2)!
�((d − 2)/2)�(d/2)

l
(d−4)/2
1 (1 − l1)

(d−2)/2 (33)

As above, we write the characteristic function from r
(d)

2 = l1u
(d)

1 + (1 − l1)u
(d)

2 :


d,2,(d/2−1,d/2)(ρ) ∝ 1

ρd−2

∫ ρ

0

J(d−2)/2(x)J(d−2)/2(ρ − x)

x
dx (34)

and we get from (32) and (58):


d,2,(d/2−1,d/2)(ρ) = 	2d−2(ρ) (35)

from which the latter walk is concluded to be HU with k = 2d − 2. The c.f. of a walk of
three steps, with a step length distribution given by D2(α

(3) = ( d
2 , d

2 − 1, d
2 − 1)), writes

similarly:


d,3,{d/2,d/2−1,d/2−1}(ρ) ∝ 1

ρ3(d−2)/2

∫ ρ

0

J(d−2)/2(x)Jd−2(ρ − x)

x
dx ∝ J3(d−2)/2(ρ)

ρ3(d−2)/2
(36)

That is, 
d,3,{d/2,d/2−1,d/2−1}(ρ) = 	3d−4(ρ). As before, these results hold for any walk in R
d

(d > 2) whose step lengths have a Dirichlet distribution Dm(α(n) = (d/2, d/2 − 1, d/2 −
1, .., d/2 − 1)). The latter walk is then HU with a hyperspace dimension k = n(d − 2) + 2
which coincides with that of the second HU family. The distribution of the endpoint and
that of the distance from the endpoint to the origin are therefore obtained from Table 1 with
δ = (n(d − 2) − d)/2. Thus, two uniform walks, which satisfy the condition n = d/(d − 2),
are obtained for the couples (d = 3, n = 3) with α(3) = ( 3

2 , 1
2 , 1

2 ) and (d = 4, n = 2) with
α(2) = (2,1). As seen in Table 2, these walks occur in the same spaces and with the same
number of steps than two previous walks but their step length distributions are different.

In sum, five additional ‘uniform’ walks were found in the present work: two walks of
two steps and two of three steps in R

3 and one of two steps in R
4. Table 2 collects the

characteristics of the seven uniform Pearson–Dirichlet walks. The uniform walks found in
R

3 and in R
4 are seen to be degenerate as they are obtained for more than one set of Dirichlet

parameters. Monte-Carlo simulations of the pdf’s of these five walks were found to be in
perfect agreement with the calculated ones (see Fig. 6 for d = 3, n = 3, q = 1/2).
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Fig. 6 Monte-Carlo simulations (108 walks) of a Pearson–Dirichlet random walk of three steps in R
3 with

q = 1/2 (the step lengths are obtained from the squares of three independent standard Gaussians whose sum is
normalized to 1). The endpoints are uniformly distributed in the inside of a sphere of radius 1. The differences
between the simulated pdf’s and the calculated ones are typically less than the thicknesses of the lines. The
pdf of the distance from the endpoint to the origin (left axis) is P3,3,1/2(r) (Table 1, d = 3, n = 3, q = 1/2)

and the marginal pdf of a step length (right axis) is p1(li ) (Table 2)

6 Stochastic Representation of Hyperspherical Uniform Walks

A simple stochastic representation of the endpoint r exists for a HU walk. We define a
k-dimensional Gaussian vector G(k), N(0, I k) where I k is the unit k × k matrix, whose
components are independent random variables with zero means and variances of 1. When
normalized, it yields a unit vector u(k) = G(k)/‖G(k)‖ whose tip is uniformly distributed over
the surface of the unit hypersphere in R

k (Appendix). The square of the modulus of G(k),
χ2

k = ‖G(k)‖2, follows, by definition, a chi-square distribution with k degrees of free-
dom [20]. It is too a gamma distribution with a shape parameter of k/2 and a scale parameter
of 1/2. It can be split into two independent chi-square random variables: χ2

k = χ2
d + χ2

k−d

with respective degrees of freedom d and k − d . To obtain the endpoint of the walk r (d)
n , it

suffices to retain the first d components of u(k). Therefore:

r (d)
n

�= G(d)

√
‖G(d)‖2 + χ2

k−d

(37)

where G(d) is now a d-dimensional Gaussian vector, N(0, I d), and where, by convention,

χ2
0 = 0. In (37), a

�= b means that a and b are identically distributed. The vector G(d) and the
random variable χ2

k−d are independent. Similarly, the distance of the endpoint to the origin
is represented by:

r(d)
n

�= χd
√

χ2
d + χ2

k−d

(38)

(χd has a chi distribution [20] with d degrees of freedom). Equations (37) and (38) were
used to perform fast Monte-Carlo simulations of any HU walk. It suffices indeed to generate
d + 1 independent random variables to simulate the endpoint positions r (d)

n and only two to
simulate r(d)

n for any n and d .
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7 Asymptotic Behavior

For n = 1, the endpoints of any Pearson–Dirichlet walk PD(d,n, q) are uniformly distrib-
uted over the surface of a unit d-dimensional hypersphere. When n increases for a fixed d ,
the endpoints invade progressively the inner part of the hypersphere forming a spherically
symmetric cloud for any n (Figs. 2 and 3). When n → ∞, the latter cloud shrinks gradually
into a Gaussian spherical cloud which is more and more concentrated around the origin. In
all cases, 〈‖r (d)

n ‖2〉 = d〈r2
1 〉 = q+1

(nq+1)
(12), decreases regularly with n independently of d .

For the HU walks, the latter scenario is a direct consequence of a theorem of Diaconis and
Freedman [30] which proves that the first d coordinates of a point uniformly distributed over
the surface of a k = an+ b sphere are independent standard normal variables, in the limit as
n → ∞ with d fixed.

For any dimension d , the main term which contributes to the moment 〈r2p

1 〉 of a single
component of r (d)

n in the limit as n → ∞, is (2p)!
2p × n(n−1)..(n−p+1)

p! × 〈l2
1 l

2
2 ..l

2
p〉 × 〈u2

1(1)〉p .
From (7) and (10), it comes:

〈r2p

1 〉∞ = lim
n→∞

(2p)!
2pdp

× n(n − 1)..(n − p + 1)

p! × (q(q + 1))p

∏2p

j=1(nq + j − 1)
= (2p−1)!!

(
q + 1

nqd

)p

(39)
which are the moments of a Gaussian distribution with a zero mean and a variance equal to
q+1
nqd

. As the distribution of r (d)
n is spherically symmetric, the latter argument indicates that

the Gaussian behavior holds in the asymptotic limit for any walk PD(d,n → ∞, q) with d

fixed.

8 Pearson–Liouville Random Walks

8.1 Definition and Generalities

The Pearson–Dirichlet walk PD(d,n, q), and specifically the HU walks whose parameters
are given in Table 1, can serve as “unit” walks to mix walks with different total lengths l. We
assume then that the total length l is distributed according to some continuous probability
density function f (l) and we denote the new step lengths as s(n) = (s1, .., sn) (

∑n

k=1 sk = l).
The renormalized step lengths, v(n) = (l1 = s1/l, .., ln = sn/ l) (

∑n

k=1 lk = 1) have a Dirich-
let distribution whose parameters are all equal to q for any value of l (10). Then the joint
pdf of s(n) is:

pL(s1, .., sn) = �(nq)

�(q)n
×

n∏

k=1

s
q−1
k × f

(∑n

k=1 sk

)

(∑n

k=1 sk

)nq−1 (40)

The step length distribution, given by (40), is a Liouville distribution with a generating
density f (·) (Chap. 6 of [19, 31]). The associated random walk will be named consistently
a Pearson–Liouville random walk. The stochastic representation of the step length vector is

s(n) �= lv(n), where l and v(n) are independent. If the generating density is defined in a finite
interval (0,L), then pL(s1, .., sn) is defined in the simplex ((s1, .., sn) : ∑n

k=1 sk ≤ L). If f (·)
is defined on R

+, the marginal distribution of a step length sk (k = 1, .., n) is calculated from
that of the underlying Pearson–Dirichlet random walk to be:

p(sk) = �(nq)

�(q)�((n − 1)q)

∫ ∞

sk

f (l)

(
sk

l

)q−1(

1 − sk

l

)(n−1)q−1
dl

l
(41)
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The endpoint of a n-step walk is simply given by r = r (d)
n = ∑n

k=1 sku
(d)
k , where u

(d)
k is a

unit vector of R
d . When the parent Pearson–Dirichlet walk PD(d,n, q) is HU, the pdf of

the endpoint, gd,n,q(r), and that, Gd,n,q(r), of the distance from the origin to the endpoint
read:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gd,n,q(r) = �(k/2)

πd/2�(δ + 1)
×

∫ ∞

r

f (l)

ld+2δ
(l2 − r2)δdl

Gd,n,q(r) = 2rd−1

B(δ + 1, d/2)
×

∫ ∞

r

f (l)

ld+2δ
(l2 − r2)δdl

(42)

as deduced from (16) where k and δ are given in Table 1. In (42), B(x, y) = �(x)�(y)/

�(x + y) is the beta function. The Pearson–Liouville walk inherits a simple geometrical
representation from its HU parent. Its endpoint r (d)

n is indeed the projection in R
d of a

vector r (k)
n of R

k whose stochastic representation is r (k)
n

�= lu(k) where l is independent of
the uniform unit vector u(k). Therefore, we get from (37) that:

r (d)
n

�= lG(d)

√
‖G(d)‖2 + χ2

k−d

(43)

where l is independent of the random vector G(d) and of the chi-square χ2
k−d . A stochas-

tic equation for the distance from the origin to the endpoint might similarly be written
from (38). The previous representations are efficient for Monte-Carlo simulations of the
endpoints of these walks. If we define now a vector t (k) of R

k , whose distribution is spheri-
cal with a density pk(t = ‖t (k)‖) equal to the generating density f (t) normalized by the area
of the hypersphere of radius t in R

k :

pk(t) = �(k/2)f (t)

2πk/2tk−1
(44)

Then the d-dimensional projection r = r (d)
n of t (k) has a density gd,n,q(r) given by (42).

The latter result is consistently found by a direct application of relation (28) of [32]. The

characteristic function of the distribution of r , 
d,n,q(ρ) = 〈eiρ·r(d)
n 〉, depends only on the

modulus ρ = ‖ρ‖ as gd,n,q(r) is spherically symmetric. It reads:


d,n,q(ρ) = 〈eiρ·r〉 = 2(k−2)/2�(k/2)

ρ(k−2)/2

∫ ∞

0

f (l)J(k−2)/2(ρl)

l(k−2)/2
dl (45)

The pdf’s gd,n,q(r) and Gd,n,q(r) (42) can be derived alternatively from the characteristic
function by the following inversion formula (equations (6) and (10) of [32]):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gd,n,q(r) = 1

(2π)d/2r(d−2)/2
×

∫ ∞

0
ρd/2J(d−2)/2(rρ)
d,n,q(ρ)dρ

Gd,n,q(r) = rd/2

2(d−2)/2�(d/2)
×

∫ ∞

0
ρd/2J(d−2)/2(rρ)
d,n,q(ρ)dρ

(46)

Equation (42) is consistently obtained when plugging (45) into (46), interchanging the order
of integration and using integral 6.575.1 of [28].



746 G. Le Caër

8.2 An Example: Random Walks with i.i.d. Gamma Distributed Step Lengths

We consider now a Pearson-“gamma” random walk of n steps in R
d whose lengths are

i.i.d. gamma distributed with a shape parameter q , denoted below as PG(d,n, q). Then the

characteristic function, 
d,n,q(ρ) = 〈eiρ·r(d)
n 〉, of the spherical distribution of the endpoint of

this walk, r (d)
n = ∑n

k=1 sku
(d)
k , is readily obtained to be:

⎧
⎪⎨

⎪⎩


d,1,q (ρ) ∝ 1

ρq

∫ ∞

0
xq−d/2J(d−2)/2(x) exp(−x/ρ)dx


d,n,q(ρ) = (

(d)

1 (ρ))n

(47)

and from integral 6.621.1 of [28]:


d,1,q (ρ) = 1

(1 + ρ2)q/2
F

(
q

2
,
d − q − 1

2
; d

2
; ρ2

(1 + ρ2)

)

(48)

where F(a, b; c; z) is a Gaussian hypergeometric function. When q = d − 1 + �, with
� = 0,1, the c.f. 
d,n,d−1+�(ρ) simplifies to:


d,n,d−1+�(ρ) = 1

(1 + ρ2)n(d−1+2�)/2
(49)

while it is:


d,n,(d−2)/2(ρ) =
[
2
(√

1 + ρ2 − 1
)
/ρ2

]n(d−2)/2

(50)

for q = (d − 2)/2. The Fourier inversion of the c.f. given by (49) yields the pdf of the
endpoint gd,n,d−1+�(r) and thus the pdf of the distance Gd,n,d−1+�(r) of a “gamma” walk
PG(d,n, d − 1 + �) in R

d (d + � ≥ 2). These densities are expressed in terms of Kv(x), a
modified Bessel function of the second kind:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v = (n(d − 1 + 2�) − d)/2

gd,n,d−1+�(r) = rvKv(r)

2v+d−1πd/2�(n(d − 1 + 2�)/2)

Gd,n,d−1+�(r) = rv+d−1Kv(r)

2v+d−2�(d/2)�(n(d − 1 + 2�)/2)

(51)

The density gd,n,d−1+�(r) and 
d,n,d−1+�(ρ) (49), once properly normalized, are dual
spherical densities [33, 34] related through Hankel transforms [32]. The latter density is
that of a d-dimensional spherical Student distribution with v degrees of freedom [19]. As
required, g2,n,1(r) (51) coincides with the density calculated by Stadje for a walk in 2D with
exponentially distributed step lengths (equation (1.5) of [9]). The densities gd,n,d−1(r) and
Gd,n,d−1(r) given by (51), for q = d−1 (� = 0), were equally obtained from the densities of
the parent HU walk of the first family with the method described in the previous subsection.
It suffices to apply (42) with δ = (n(d − 1) − (d + 1))/2 and to use integral 3.387.6 of [28].

The method of the previous subsection can be applied to the second HU family, with
q = (d − 2)/2 (d ≥ 3), n ≥ 2 and δ = (n(d − 2) − d)/2 (Table 1). The endpoint and the
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distance pdf’s read:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v = (n(d − 2) − d)/2

gd,n,(d−2)/2(r) = n(d − 2)

2πd/2�(v + 1)
×

∫ ∞

r

exp(−l)

lv+d/2+1
(l2 − r2)vdl

Gd,n,(d−2)/2(r) = n(d − 2)rd−1

�(d/2)�(v + 1)
×

∫ ∞

r

exp(−l)

lv+d/2+1
(l2 − r2)vdl

(52)

Explicit general solutions, like those given by (51), were not found in that case. Precise
numerical calculations of Gd,n,(d−2)/2(r) can however be performed from the characteristic
function ((46) and (50)), where n ≥ 3 for d = 2. The latter distribution can be expressed
explicitly in some specific cases, for instance for d = 3 and n = 3,5:

⎧
⎪⎪⎨

⎪⎪⎩

G3,3,1/2(r) = 8r2erfc(
√

r) + 2√
π

√
r(2 − 4r) exp(−r)

G3,5,1/2(r) = 4

3
r2(4r2 − 15)erfc(

√
r) + 8

3
√

π
r3/2(6 + r − 2r2) exp(−r)

(53)

where erfc(x) is the complementary error function.
For the previous “gamma” walk, PG(d,n, q), the total travelled distance l after n steps is

also gamma distributed, with a pdf given by f (l) = lnq−1 exp(−l)/�(nq). We consider now
a Pearson–Dirichlet random walk PD(d,n, q), not necessarily restricted to be hyperspher-
ical uniform, whose endpoint has a pdf pd,n,q(r) with l = 1 and pd,n,q(r) = 0 for r > 1.
From an equation analogous to (42), the distance from the endpoint of the “gamma” walk
PG(d,n, q) to the origin is found to have a pdf, Gd,n,q(r), which may be deduced by a
Laplace transform from the pdf, pd,n,q(r), of the parent Pearson–Dirichlet walk, namely:

Gd,n,q(r) = 2πd/2rnq−1

�(d/2)�(nq)

∫ ∞

0
exp(−rt)tnq−d−1pd,n,q(1/t)dt (54)

Conversely, an inverse Laplace transform might in principle yield pd,n,q(r) from Gd,n,q(r)

but such calculations are not necessarily straightforward.
Beghin and Orsingher [24] studied a planar random motion at finite constant velocity

in which a particle changes direction at even-valued Poisson events (q = 2). They derived,
among others, the densities of the particle position at time t given the number of reorienta-
tions between 0 and t . Interestingly, such densities are obtained as mixtures of pdf’s of the
motion of a particle changing direction at all Poisson events [24]. Their results solve thus
the 2D Pearson–Dirichlet walk PD(2, n,2), with a step length distribution deduced from
p(sk) = sk exp(−sk) (k = 1, .., n). When the total number of Poisson events is odd, the pdf
p2,n,2(r) (n ≥ 2) is indeed expressed as:

p2,n,2(r) =
� n

2 �∑

h=0

rj (h)p2,n+2h,1(r) (55)

In (55), j is equal to 1 when the number of steps is odd, n = 2p + 1 (p ≥ 1), to 3 when n is
even, n = 2p + 2 (p ≥ 0), and �x� = floor(x). The densities p2,n+2h,1(r) are given by (1).
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The weights rj (h) were calculated by Beghin and Orsingher (equation (3.3) of [24]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(h) =
(

4p

4p + 3

)(
p

h

)
B(2p,p + 3

2 )

B(p + h + 1,p − h + 3
2 )

r3(h) = 3(2h + 1)

4(2p + 3)w(h)

(
p + 1

h

)
B(2p + 5

2 ,p + 3
2 )

B(p + h + 3
2 ,p − h + 5

2 )

w(0) = 0, w(h) = 1 +
⌊

h

p + 1

⌋

(1 ≤ h ≤ p + 1)

(

h = 0, ..,

⌊
n

2

⌋)

(56)

where B(x, y) is the beta function. The pdf of the distance from the endpoint of the “gamma”
walk PG(2, n,2) to the origin, G2,n,2(r), is given by (51) with d = 2, � = 1, q = 2. Inserting
(55) into (54), it is possible to relate linearly the moments of the latter distance, 〈r2x〉 =∫ ∞

0 r2xG2,n,2(r)dr , x ≥ 0, to the weights rj (h), j = 1 or 3, by:

� n
2 �∑

h=0

rj (h) × �(n+1
2 + h)

�(n+1
2 + h + x)

= 4x × �( 3n
2 + x)

�( 3n
2 )

× �(2n)

�(2n + 2x)
(57)

The weights calculated from the latter linear equations for small values of n, which agree
with those given by (56), confirm the usefulness of (54).

The hyperspherical uniform property provides a convenient way of performing Monte-
Carlo simulations of endpoints of “gamma” walks PG(d,n, q) whose step lengths have
gamma distributions with shape parameters respectively equal to d

i
− 1 (d ≥ i + 1) for

i = 1,2. The stochastic representation, r (d)
n

�= lG(d)/

√
‖G(d)‖2 + χ2

k−d , where l is then

gamma distributed with a shape parameter n( d
i
− 1), shows that it suffices to generate only

d + 2 independent random variables for any n. Many of the Pearson–Dirichlet HU walks,
and in particular all uniform walks, and the “gamma” walks defined in Sect. 8.2 were fur-
ther investigated by Monte-Carlo simulations to obtain “experimental” distributions of the
distance of the endpoint to the origin. All results were found to be in excellent agreement
with the corresponding closed-form distributions derived in the present work (Fig. 6).

9 Conclusions

We introduced a variant of the Pearson–Rayleigh random walk of n ≥ 2 steps which are ran-
dom vectors whose orientations are independent and uniform in R

d and whose lengths have
a Dirichlet distribution whose parameters are all equal to a given positive number q . Two
families of walks, named “hyperspherical uniform”, are obtained for values of the parameter
q equal to d

i
− 1, with d ≥ i + 1, for i = 1,2 respectively. For any number of steps, the end-

point distributions of the latter walks are identical to the distributions of the projection in the
walk space R

d of a point randomly chosen on the surface of the unit hypersphere of a hyper-
space R

k . The hyperspace dimension associated with each family is equal to n(d − i) + i.
The associated probability density function of the endpoint position r is consequently given
by pd,n,q(r) ∝ (1 − r2)δ where 2δ = n(d − i) − (d + 2 − i). Four walks, two of two steps
and two of three steps, whose endpoints are uniformly distributed in the inside of the unit
hypersphere in R

d are then found for d = 2,3,4 from δ = 0. The single uniform walks in 2D
and in 4D were previously known [10, 12, 13], two new uniform walks in 3D are evidenced
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here. Three additional uniform walks are obtained from finite integrals of products of pow-
ers and Bessel functions of the first kind for Dirichlet distributions of step lengths whose
parameters are not all the same. Once constructed, the HU walks may be used to derive the
endpoint distributions of random walks whose total step length is distributed according to a
given law.

Important aspects of the studied walks are connected with the general problem of the
random fragmentation of the unit interval (see for instance [35] and references therein).
Finally, there is a deep connection between the HU walks and finite integrals of products of
Bessel functions and powers.

Acknowledgements I thank Prof. R. Delannay (Université de Rennes I), Prof. A.D. Kolesnik (Academy
of Sciences of Moldova) and Prof. E. Orsingher (Università di Roma) for useful discussions.

Appendix: Uniform Distribution of a Vector over the Surface of the Unit
Hypersphere in R

k

Consider first a unit vector u(k) whose tip spans uniformly the surface of the hypersphere in
R

k . Using hyperspherical coordinates, the characteristic function (c.f.) 	k(ρ) = 〈eiρ.u(k)〉 of
the distribution of u(k), which depends only on the modulus ρ = ‖ρ‖, is found to be:

	k(ρ) = �(k/2)√
π�((k − 1)/2)

∫ π

0
eiρ cos(θ) sink−2(θ)dθ = 2(k−2)/2�(k/2)

ρ(k−2)/2
J(k−2)/2(ρ) (58)

where the c.f. has been expressed in term of a Bessel function of the first kind, Ju(ρ). More
generally, the c.f. 
k(ρ) = 〈eiρ·r(k)〉 of any spherically symmetric vector r (k) of R

k , whose
distribution is invariant by any orthogonal transformation, is similarly a function of the sole
modulus of ρ [19]. Thus, the c.f. of the marginal distribution of any number j (j = 1, .., k)

of components of a spherical vector r (k) is still 
k(ρ) but ρ is now the modulus of a vector
ρ in which k − j components are made equal to zero. To prove that a spherically symmetric
vector r (d)

n is the projection of a unit vector u(k), it would suffice to show that the c.f. of the
first component r1 of r (d)

n is 
1(ρ) = 〈eiρ·r1〉 = 	k(ρ).
Consider now a vector G(k) = (G1, ..,Gk) of R

k , whose components are i.i.d. standard
Gaussian variables with a zero mean and a variance of 1 and whose modulus is G = ‖G(k)‖.
Then the tip of the unit vector u(k) = (u1 = G1/G, .., uk = Gk/G) spans uniformly the
surface of the hypersphere in R

k (see for instance [19] p. 20). Every G2
i (i = 1, .., k) is

gamma distributed with a shape parameter of 1/2 and a scale parameter of 1/2: Si = G2
i ,

p(si) = s
−1/2
i exp(−si/2)/

√
2π (it is a chi distribution with one degree of freedom [20]).

The distribution of (l1 = u2
1 = G2

1/G2, .., lk = u2
k = G2

k/G2) is consequently a Dirichlet
distribution whose parameters are all equal to 1/2. Then, the joint distribution of any number
j of components of u(k) can be obtained by using the amalgamation property (Sect. 2.2). The
resulting pdf is given by [19, 26]:

pj (u1, u2, .., uj ) = �(k/2)

�((k − j)/2)πj/2

(

1 −
j∑

i=1

u2
i

)(k−j−2)/2 (
j∑

i=1

u2
i < 1

)

(59)

Thus, a uniform distribution in the inside of a j = k − 2-dimensional hypersphere of ra-
dius R can be derived from the projection of a uniform distribution over the surface of a
k-dimensional hypersphere of radius R. The latter property was used by Lord to obtain the
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pdf of the distance between two points uniformly distributed in a hypersphere of R
k−2 from

a Pearson random walk of two steps of length R in R
k [27]. The Dirichlet distribution of

(l1 = u2
1, .., lk = u2

k), whose parameters are all equal to 1/2 and (7) with α(k) = (1/2, ..,1/2)

and β(k) = (p,0, . . . ,0) yield the even moments 〈u2p

i 〉 of a single component of u(k):

〈u2p

i 〉 = (1/2)p

(k/2)p

= (2p − 1)!!
∏p

j=1(k + 2j − 2)
(60)
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